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Abstract
We study, analytically and numerically, the stationary states in the system of two
linearly coupled nonlinear Schrödinger equations in two spatial dimensions,
with the nonlinear interaction coefficients of opposite signs. This system is
the two-dimensional analogue of the coupled-mode equations for a condensate
in the double-well trap (2004 Phys. Rev. A 69 033609). In contrast to the
one-dimensional case, where there are stable bright solitons, in two spatial
dimensions the Townes-type solitons of the system are unstable. With the use
of a parabolic potential, the ground state of the system can be stabilized.
It corresponds to strongly coupled condensates and is stable with respect
to collapse. This is in sharp contrast to the one-dimensional case, where
the ground state corresponds to weakly coupled condensates and is unstable.
Moreover, the total number of atoms of the stable ground state can be much
higher than the collapse threshold for a single two-dimensional condensate
with a negative s-wave scattering length.

PACS numbers: 05.45.Yv, 03.75.Lm, 03.75.Nt

1. Introduction

Bose–Einstein condensates (BECs) in trapped dilute gases exhibit interesting interplay between
quantum coherence and nonlinearity since, at zero temperature, the quantum gas is described by
the mean-field theory based on the nonlinear Schrödinger equation with an external potential—
the Gross–Pitaevskii (GP) equation [1] for the order parameter. The macroscopic quantum
coherence of BEC, first experimentally demonstrated in [2, 3], was subsequently explained
theoretically [4] with the use of the GP equation. Mean-field theory description, however,
neglects the quantum fluctuations, in particular fluctuations of the number of BEC atoms.

Nonlinear phenomena in BEC bear similarity to nonlinear optics. Similar to optics,
where the bright and dark solitons are supported, respectively, by the focusing and defocusing
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nonlinearities, in BECs the s-wave scattering length is the determining factor. Dark solitons
are routinely observed in the quasi-one-dimensional condensates with repulsive interactions
[5–8]. On the other hand, the attractive one-dimensional BEC propagates in the form of the
bright solitons [9, 10].

The s-wave scattering length can be modified by application of a magnetic field near the
Feshbach resonance [11]. For a BEC constrained to lower spatial dimensions, the Feshbach
resonance still proves to be sharp, for instance, in the two-dimensional condensate [12]. The
feasibility of control over the scattering length in BEC by optical means was also proposed
[13] (see also [14, 15]).

Control over the scattering length in a part of the condensate can be realized in the double-
well trap with far-separated wells. Condensates in the double-well potential are currently
routinely created and studied in the experiments (see, for instance, [16–18]).

The double-well trap is created in one spatial dimension, the other two dimensions thus
allow for two geometrically distinct cases which correspond to the one- and two-dimensional
BECs depending on the trap asymmetry. A combination of the double-well trap with the
control over the scattering length allows one to observe two tunnel-coupled BECs with opposite
interactions (i.e. one attractive and the other repulsive). In one spatial dimension, such a setup
leads to the appearance of the unusual stable bright solitons [19, 20] which have almost all
atoms contained in the repulsive condensate. The one-dimensional ground state, however,
corresponds to weakly coupled condensates and is unstable with respect to collapse [19].
In this paper, we study the two-dimensional case. We find that the two-dimensional solitons
(the Townes-type solitons) are always unstable. However, with the help of a confining potential,
the ground state can be stabilized. In contrast to the one-dimensional case, in two dimensions
the ground state of the system corresponds to strongly coupled condensates and there is an
energy barrier for collapse (see also [21]).

The applicability of the GP-based mean-field theory is limited, but it always applies to the
description of stable stationary states. This is due to the similarity between the Bogoliubov–de
Gennes equations, describing the surrounding cloud of hot atoms, and the equations describing
evolution of a linear perturbation of the order parameter [22]. Thus, a stable mean-field
stationary state is also stable in the full quantum approach, its lifetime is equal to that of the
condensate. In lower dimensions, the applicability of the mean-field theory is also stipulated
by the smallness of the ratio of the average atomic distance to the healing length (see, for
instance, [23]).

Theoretical investigations of BEC in the double-well trap go back to the prediction of
the anomalous Josephson oscillations [24] and the macroscopic quantum self-trapping of the
condensate [25–27].

Experimental advances [16–18] in the production and manipulation of the condensate in
the double-well trap make the implementation of the tunnel-coupled repulsive and attractive
condensates feasible. The double well is created by focusing an off-resonant laser beam at
the centre of the parabolic potential. The minimal separation between the wells is of the order
of the corresponding oscillator length of the parabolic potential. In this respect, the optical
means for control over the scattering length [13] could be used. Recently, a direct observation
of the quantum tunnelling and nonlinear self-trapping of a BEC in the double-well trap was
reported [18].

The collapse instability in an attractive BEC loaded into the double-well trap was also
recently investigated. In the quasi-one dimensional case, the critical number for collapse turns
out to be larger than the same for the corresponding axially symmetric harmonic trap [28]. The
tunnelling-induced collapse of an attractive BEC in a double-well trap can take place under
the influence of a time-dependent potential [29].
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Control over the scattering length in one part of a condensate can be realized in a
double-well trap with far-separated wells. In this case, a simplification of the GP equation is
possible, which results in a coupled-mode approximation similar to that of [26, 27]. However,
in contrast to the latter works, the kinetic energy of the condensate is taken into account
(see section 2). The coupled-mode system also has applications in optics (see, for instance,
[30–32]).

Since the two-dimensional (2D) nonlinear Schrödinger equation (NLS),

i∂t� + ∇2� − g|�|2� = 0, (1)

is critical, we adopt the point of view based on the analysis of the critical scaling and its
perturbations. The NLS equation has the following scale invariance: if �(t, �r) is a solution,
then �̃(t, �r) = k�(k2t, k�r) is also a solution. The number of atoms N (or the l2-norm),
defined by N = ∫

dn�r|�|2, is scaled as Ñ = k2−nN in n spatial dimensions.
The scale invariance of the 2D NLS equation allows for a family of solutions with the same

number of particles. One may call the 2D scale invariance the ‘critical scaling’. The critical
scaling leads to important consequences (see, for instance, [33]). As the number of particles is
constant for the whole family of solutions, the Vakhitov–Kolokolov (VK) criterion [34] applied
to the Townes soliton gives marginal stability (or instability), since ∂N/∂µ = 0, where µ is
the chemical potential for a particular solution of the family (i.e. −µ is the frequency).

This explains why addition of an external confining potential allows for stable localized
solutions. Indeed, the external potential breaks the scale invariance and the number of particle
degeneracy is broken too: some solutions of the former Townes soliton family have number of
particles below the collapse threshold (moreover, thanks to the so-called lens transformation
[35], the collapse threshold does not depend on the strength of the potential if the latter is
parabolic).

Besides addition of an external potential, there are other ways to break the scale invariance.
The coupled-mode system, i.e. the system of two linearly coupled NLS equations, provides
another way. The coupling coefficient is proportional to the tunnelling rate through the central
barrier.

Having understood the relation between the broken scale invariance and stability against
collapse, one may wonder if the linear coupling of two 2D NLS equations allows for the
existence of stable two-dimensional (i.e. Townes-type) solitons. Indeed, if the critical scaling
is broken and the number of atoms (or the number of particles, generally) depends on the
chemical potential, then there could be self-localized stationary solutions (which have the
right to be called solitons) with ∂N/∂µ < 0, i.e. satisfying the VK criterion, with the hope
that they are stable.

In the following, using the singular perturbation theory supplemented by numerical
simulations, we argue that the two-dimensional soliton solutions to the coupled-mode system
are always unstable with respect to collapse. The reason is that, in contrast to the 1D case [19],
the bifurcation from zero in the 2D coupled-mode system is always discontinuous: the number
of atoms of the two-dimensional soliton solution with vanishing amplitude does not vanish.
However, addition of an external confining potential (a potential transverse to the double-well
trap) restores the continuity of the bifurcation from zero and leads to the appearance of stable
solutions. Some of them have the number of atoms much larger than the collapse threshold in
a single 2D NLS equation. Moreover, such a solution is the ground state of the system, since it
has the lowest possible energy for a fixed number of atoms. In contrast to the one-dimensional
case, the ground state in the two-dimensional system is secured from collapse by an energy
barrier.
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The paper is organized as follows. In section 2 we derive the coupled-mode system from
the Gross–Pitaevskii equation for a condensate in an asymmetric double-well trap. In section 3
we consider the stability properties of the axially symmetric stationary states. Section 4 is
devoted to the study of the limiting case solutions: the bifurcation from zero in the coupled-
mode system with and without the parabolic potential, sections 4.1 and 4.2, respectively,
and the asymptotic solution corresponding to large negative values of the chemical potential,
section 4.3. The reader not interested in details of the bifurcation analysis may go directly to
section 5, where we summarize the results and discuss the numerical solution of the coupled-
mode system. In the numerics, we have used the Fourier spectral collocation method and
looked for stationary solutions using the numerical schemes of [20, 36]. Section 6 contains
some concluding remarks.

2. Derivation of the coupled-mode system

The coupled-mode system follows from the GP equation under two conditions. First, the wells
of the double-well trap must be far separated. Second, the number of BEC atoms must be
below a certain threshold (see equation (11)) with the result that the motion of the condensate
in the spatial dimension of the double-well trap is equivalent to that of a quantum particle. The
stationary states considered below satisfy this condition. It follows that BEC atoms occupy
only the degenerate energy levels of the double-well trap.

The tunnelling coefficient, usually defined through an integral over the overlap of the
wavefunctions (see, for instance, [26, 27]), can be, in fact, explicitly given in terms of the
parameters of the double-well trap (equation (8)). This is due to the above conditions and
the simple fact that the wavefunctions of the localized basis (given by equations (5) and (6))
are uniquely defined by the trap.

The two-dimensional coupled-mode system describes the so-called pancake condensates.
Although the 1D and 2D coupled-mode systems are similar, there is a difference in the order
of magnitude of the respective parameters which is explained below.

The Gross–Pitaevskii equation for the order parameter �(�r, t) of a BEC in a double-well
trap given by a parabolic potential with a Gaussian barrier reads

ih̄∂t� =
{
− h̄2

2m
∇2 + Vext(�r) + g|�|2

}
�, (2)

where

Vext = m

2

(
ω2

⊥�r⊥2 + ω2
zz

2
)

+ VB exp

{
− (z − z0)

2

2σ 2

}
, VB > 0. (3)

Here, the parameters z0 and σ give the position and width of the barrier, respectively. The
pancake geometry corresponds to the condition γ ≡ ωz/ω⊥ � 1. In terms of the potential
from equation (3), the wells of the double-well trap are far separated if σ ∼ �z, with �z ≡

√
h̄

mωz

being the oscillator length in the z-direction.
The motion in the double-well trap and the transverse dynamics of BEC can be factorized

if the number of BEC atoms is not large (see equation (11)), i.e. if the oscillator length �z is
much smaller than the characteristic length of nonlinearity �nl. In the case of a double-well
with far-separated wells, the first two energy levels are quasi-degenerate:

E1 − E0 � E2 − E1. (4)

Being interested in the ground state of the system (occupied by the condensate), we consider
only the degenerate subspace. This approximation neglects the uncondensed atomic cloud
which can be discarded for temperatures below the condensation threshold [1].
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The basis in the degenerate subspace for expansion of the order parameter is dictated by
the necessity to simplify the nonlinear term, which is not small for the transverse degrees of
freedom, i.e. in the pancake plane. Evidently, one should select such a basis, say ψu(z) and
ψv(z), where each basis function is localized in just one of the wells. The localized basis is
given by a rotation of the wavefunctions for the ground state and the first excited state:

ψu(z) = ψ0(z) + �ψ1(z)√
1 + �2

, ψv(z) = �ψ0(z) − ψ1(z)√
1 + �2

. (5)

Obviously, the new wavefunctions are orthogonal and normalized. The parameter � is selected
by the quotient of the absolute values of the eigenfunctions ψ0(z) and ψ1(z) at the minima of
the double-well potentials z− and z+ (say, z− < z+) [19]. We set

� = ψ1(z−)

ψ0(z−)
≈ −ψ0(z+)

ψ1(z+)
(6)

(the positions of the extremals of the wavefunctions slightly deviate from the minima of
the trap; these deviations we neglect). For this choice of �, the wavefunctions ψu(z) and
ψv(z) defined by equation (5) are localized in the left and right wells, respectively (see also
figures 1 and 2 in [19]).

The Hamiltonian for a quantum particle in the double-well potential, projected on the
degenerate subspace, i.e. Hz = E0|ψ0〉〈ψ0| + E1|ψ1〉〈ψ1|, in the new basis becomes

Hz = Ē(|ψu〉〈ψu| + |ψv〉〈ψv|) + |ψv〉E〈ψv| − K(|ψu〉〈ψv| + |ψv〉〈ψu|). (7)

Here,

Ē = �2(E0 + E1)

1 + �2
, E = 1 − �2

1 + �2
(E1 − E0), K = �(E1 − E0)

1 + �2
. (8)

We can set Ē = 0 without loss of generality. Equation (8) gives the tunnelling coefficient K
and the zero-point energy difference E .

We approximate the solution of the GP equation (2) by a sum of the factorized order
parameters:

�(t, �r⊥, z) = 	u(t, �r⊥)ψu(z) + 	v(t, �r⊥)ψv(z). (9)

Let us now formulate the condition for the factorization in equation (9). We have neglected
the nonlinear term in the Gross–Pitaevskii equation as compared to the longitudinal kinetic
term, that is

h̄2

2m

1

�2
z

� |g||	|2|ψ |2 (10)

(for each of the two wells). The wavefunctions can be estimated as follows: |ψ |2 ∼ 1/�z

and |	|2 ∼ N /d2
⊥, with d⊥ being the transverse radius of the condensate and N the number

of atoms (in the considered well). Using the expression for the nonlinear coefficient in the
Gross–Pitaevskii equation g = 4πh̄2as/m [1], where as is the atomic scattering length, we
get the applicability condition for the separation of variables as follows:

8π |as|�zN
d2

⊥
� 1. (11)

Condition (11) must be satisfied by both condensates in the double-well trap.
The coupled-mode system is derived by inserting expansion (9) into equation (2), using

the orthogonality of the basis functions ψu,v , the formulae

Hzψu = −Kψv, Hzψv = Eψv − Kψu
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and throwing away the small nonlinear terms involving the cross-products of the localized
wavefunctions ψu and ψv (see also the discussion of [19]). One arrives at the system

ih̄∂t	u = − h̄2

2m
∇2

⊥	u + V (�r⊥)	u + gu|	u|2	u − K	v, (12a)

ih̄∂t	v = − h̄2

2m
∇2

⊥	v + V (�r⊥)	v + (E + gv|	v|2)	v − K	u. (12b)

Here, gu,v ≡ ∫
dz g(z)|ψu,v|4 and V (�r⊥) = mω2

⊥
2 �r⊥2 (by changing the sign of either ψu or ψv ,

one can always set K > 0).
System (12) is the basis of our approach. Conditions (4) and (11) are satisfied by all

stable stationary states considered below. In the search for two-dimensional soliton solutions,
we will neglect the confining transverse potential V (�r⊥) (i.e. when it is considered as flat on
the scale of the Townes-like soliton solution). This case will be called below ‘the coupled-
mode system without the transverse potential’. The atomic interaction in the u-condensate is
attractive, gu < 0, while in the v-condensate it is externally modified to repulsive, gv > 0.

For the numerical and analytical analysis, it is convenient to use the dimensionless
variables defined as follows:

T = ω⊥
2

t, �ρ = �r
�⊥

, �⊥ ≡
√

h̄

mω⊥
. (13)

The order parameters are expressed as

	u =
√

�

�⊥
u, 	v =

√
�

�⊥
v, (14)

where � = (√
8π |a(u)

s | ∫ dz|ψu|4
)−1

and a(u)
s is the scattering length in the u-condensate. The

dimensionless system reads

i∂T u = (−∇2
�ρ + �ρ2

)
u − |u|2u − κv, (15a)

i∂T v = (−∇2
�ρ + �ρ2

)
v + (ε + a|v|2)v − κu. (15b)

Here

a = a(v)
s∣∣a(u)
s

∣∣
∫

dz|ψv|4∫
dz|ψu|4 , κ = 2K

h̄ω⊥
= 2�

1 + �2

E1 − E0

h̄ω⊥
, ε = 2E

h̄ω⊥
= 2

1 − �2

1 + �2

E1 − E0

h̄ω⊥
.

(16)

The number of atoms N in the condensate (the l2-norm) is given as follows:

Nu,v =
∫

d2 �ρ|	u,v|2 = �Nu,v, Nu ≡
∫

d2 �ρ|u|2, Nv ≡
∫

d2 �ρ|v|2. (17)

The quantity Nu,v will be referred to as the ‘number of atoms’ for short, since we are interested
only in the relative shares of the number of atoms in the two condensates and the ratio of the
total number of atoms to the collapse threshold in a single 2D NLS. The transformation
coefficient � can be estimated as �z

8π |as| , it is of order 102–103 for the current trap sizes in the
experiments with BECs.

The tunnelling coefficient κ and the zero-point energy difference ε of the dimensionless
coupled-mode system can take arbitrary values. Indeed, from the definition (16), we have

κ = 2K

h̄ω⊥
= γ

2K

h̄ωz

, ε = 2E
h̄ω⊥

= γ
2E
h̄ωz

,
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i.e. there are two unrelated multipliers, the first, γ , is large and the second is small.
Finally, we can reformulate the applicability condition (11) for the coupled-mode system

in the dimensionless variables

Nu � γ r2
u, aNv � γ r2

v , (18)

where ru,v = d
(u,v)
⊥

/
�⊥ is the dimensionless radius of the condensate. Condition (18) is derived

by using the transformation (17) with the estimate
∫

dz|ψu,v|4 ∼ 1/�z and γ = �2
⊥
/
�2

z .
We have verified that condition (18) is satisfied (for the pancake trap with γ � 100) by

the stable stationary states (figures 3, 4, 6 and 7).
If more than two energy levels of the double-well trap are significantly occupied by the

condensate, the conditions for applicability of the coupled-mode system (12) are violated. In
this case, one can use the nonlinear coupled-mode approach [37] which results, however, in
the nonlinearly coupled NLS equations.

3. Stability of the stationary states

BEC in a double-well trap can be unstable with respect to collapse if the atomic interaction
is attractive (the u-condensate in the notation of the previous section). By setting κ = 0 in
system (15), we obtain for the u-condensate the focusing 2D NLS equation with an external
potential. In the simplest case when the potential is parabolic, the collapse threshold is given
by the l2-norm of the Townes soliton:

Nth = 11.69, (19)

since the collapse threshold is independent of the parabolic potential [35, 33]. The Townes
soliton is the solution u = eiT R(ρ) of the 2D NLS equation, i.e. the function R(ρ) satisfies

∇2R + R3 − R = 0. (20)

Here and below, the operator ∇ is the gradient with respect to �ρ if it is not explicitly indicated
otherwise by a subscript. In the following, we will need the well-known identity for the
Townes soliton (see, for instance, [33])∫

d2 �ρ R2 =
∫

d2 �ρ(∇R)2 = 1

2

∫
d2 �ρ R4. (21)

Let us now consider the problem of stability of the stationary states in the coupled-mode
system. We are interested only in the axially symmetric stationary states, u = e−iµT U(ρ) and
v = e−iµT V (ρ), where ρ = | �ρ|. The stability or instability can be established by considering
the eigenvalue problem associated with the linearized system. Writing the perturbed solution
as follows:

u = e−iµT {U(ρ) + e−i�T U( �ρ)}, v = e−iµT {V (ρ) + e−i�T V( �ρ)}, (22)

where (U,V) is a small perturbation mode with the frequency � which comprise a solution of
the eigenvalue problem:

−i�

(
UR

VR

)
= �0

(
UI

VI

)
, i�

(
UI

VI

)
= �1

(
UR

VR

)
, (23)

with

�0 =
(

L
(u)
0 −κ

−κ L
(v)
0

)
, �1 =

(
L

(u)
1 −κ

−κ L
(v)
1

)
. (24)
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Here, the scalar operators are defined as follows:

L
(u)
0 = −(∇2 + U 2 + µ) + ρ2, L

(u)
1 = −(∇2 + 3U 2 + µ) + ρ2,

L
(v)
0 = −(∇2 − aV 2 + µ − ε) + ρ2, L

(v)
1 = −(∇2 − 3aV 2 + µ − ε) + ρ2.

(25)

First of all, the matrix operator �0 is non-negative for positive stationary solutions, i.e.
satisfying UV > 0. Indeed, the scalar operators on the main diagonal of �0 can be cast as
follows:

L
(u)
0 = − 1

U
∇U 2∇ 1

U
+ κ

V

U
, L

(v)
0 = − 1

V
∇V 2∇ 1

V
+ κ

U

V
,

which can be easily verified by direct calculation. Therefore, the scalar product of �0 with
any vector X = (X1( �ρ),X2( �ρ)) is non-negative:

〈X|�0|X〉 =
∫

d2 �ρ{
X∗

1L
(u)
0 X1 + X∗

2L
(v)
0 X2 − κ(X∗

1X2 + X∗
2X1)

}
� κ

∫
d2 �ρ

∣∣∣∣∣X1

√
V

U
− X2

√
U

V

∣∣∣∣∣
2

� 0.

Here, we have used the positivity of the operators − 1
U

∇U 2∇ 1
U

and − 1
V

∇V 2∇ 1
V

. The operator
�0 has one zero mode given by the stationary point itself: Z = (U, V ),�0Z = 0.

Non-negativity of �0 is an essential property for the following, therefore we will
concentrate on the solutions satisfying UV > 0, which can be termed ‘positive’ solutions,
while the ones satisfying UV < 0 are discarded from the consideration below. The latter
solutions bifurcate from zero at a higher energy than the positive ones (see sections 4.1
and 4.2).

For a positive solution, the lowest eigenfrequency of the linear stability problem can be
found by minimizing the quotient

�2 = min
〈X|�1|X〉
〈X|�−1

0 |X〉 (26)

in the space orthogonal to the zero mode of �0: 〈Z|X〉 = 0 (here 〈X|Y 〉 ≡ ∫
d2 �ρ(X∗

1Y1 +
Y2X

∗
2)). Equation (26) follows from the eigenvalue problem rewritten as �0�1X = �2X with

X = (UR,VR).
The imaginary eigenfrequencies �, which mean instability, appear due to negative

eigenvalues of the operator �1. For the coupled-mode system without the transverse potential,
there is at least one zero eigenvalue of �1 due to the translational invariance, with the
eigenfunction (in the vector form) being given as Z1 = (∇U,∇V ). For the positive stationary
solutions, if there is only one negative eigenvalue, the VK stability criterion ∂N

∂µ
< 0 applies,

which can be established by a simple repetition of the arguments presented, for instance, in
[38]. The limit on the number of negative eigenvalues is related to the fact that the minimization
of the quotient in equation (26) is subject to only one orthogonality condition, thus only one
negative direction in the energy functional can be eliminated by satisfying this condition.

The following simple strategy has been used to establish the stability. The eigenvalue
problem was reformulated in the polar coordinates (ρ, θ) and the operators were expanded in
Fourier series with respect to θ , which is done by the simple substitution: ∇2 → ∇2

ρ − n2/ρ2,
where ∇2

ρ = ∂2
ρ + ρ−1∂ρ . Noting that the orbital operators �1,n = �1

(∇2 → ∇2
ρ − n2/ρ2

)
are ordered as follows: �1,n+1 � �1,n, we have checked for the negative eigenvalues of the
first two orbital operators with n = 0, 1. If there are two or more negative eigenvalues (for
instance, if �1,0 and �1,1 both have one negative eigenvalue), then the solution is unstable;
if there is only one such �1,0, then one can apply the VK criterion. From our numerical
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simulations it follows that �1,1 is always positive, while the operator �1,0 has one negative
eigenvalue or none (the latter case corresponds to the defocusing effective nonlinearity in the
coupled-mode system with the transverse potential, see sections 4.2 and 5).

When the operator �1 does not have negative eigenvalues at all, the solution is
unconditionally stable. In this case, the formal threshold ∂N

∂µ
= 0 of the stability criterion is

the point where an additional zero mode of the operator �1,0 appears. Indeed, at the threshold
point, we have ∫

d2 �ρ
(

∂U

∂µ
,
∂V

∂µ

)
�1,0

(
∂U
∂µ

∂V
∂µ

)
= 0,

due to the identity

�1,0

(
∂U
∂µ

∂V
∂µ

)
=

(
U

V

)
, (27)

which follows from differentiation of the stationary coupled-mode system, �0(U, V )T = 0,
with respect to µ. Hence, in this case, on one side of the VK threshold the operator �1,0

is positive and the solution is unconditionally stable, while on the other side there is one
negative eigenvalue and the VK criterion applies (this corresponds to a change of the effective
interaction from the repulsive to attractive, see sections 4.2 and 5).

Note that the above approach allows us to decide on the stability of the stationary solutions
to the coupled-mode system without numerical solution of the full eigenvalue problem (23).

4. Small-amplitude and asymptotic solutions

In this section we study two limiting cases of solutions of the coupled-mode system (15): the
solution with vanishing amplitude (i.e. the bifurcation from zero) and the asymptotic solution
with the chemical potential taking large negative values. There is an essential difference
in the bifurcating small-amplitude solutions in the coupled-mode systems with and without
the transverse potential, while the asymptotic solution, though also possessing some minor
difference between the two cases, can be studied for both cases simultaneously. Accordingly,
the section is divided into three subsections. First, we study the soliton bifurcation from zero,
i.e. the coupled-mode system without the transverse potential, in section 4.1. In section 4.2,
the same bifurcation is considered in the coupled-mode system with a general transverse
potential. We derive the asymptotic solution in section 4.3 using, for simplicity, the parabolic
transverse potential.

4.1. The soliton bifurcation from zero

Though the linear coupling of the repulsive and attractive NLS equations breaks the scale
invariance, the 2D soliton solutions are always unstable. This conclusion follows from a
comparison of the soliton bifurcation from zero, i.e. µ → µbif (which is the subject of this
section) and the asymptotic solution when µ → −∞ (which is considered in section 4.3).
Moreover, it is supported by the direct numerical solution of section 5.

The stationary coupled-mode system (when the transverse potential is flat) reads

µU + ∇2U + U 3 + κV = 0, (28a)

(µ − ε)V + ∇2V − aV 3 + κU = 0. (28b)
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First of all, the most important information on the existence of solitons is provided by the
dispersion law of the linearized system, which has two branches in the case of the coupled-
mode system (28). Setting U = U0 e−λρ and V = V0 e−λρ , in the limit of vanishing U0 and
V0, we obtain

λ2
1,2 = µ1,2 − µ, µ1 = ε

2
−

√
ε2

4
+ κ2, µ2 = ε

2
+

√
ε2

4
+ κ2. (29)

It is easy to see that the following inequalities hold: µ1 < 0 < µ2 and µ1 < ε < µ2.
The same dispersion relations appear also in the 1D case as well [19], their universality is

due to the fact that the limiting values of the chemical potential are determined by the energy
difference in the double-well trap and the trap asymmetry:

µ1 =
(

1 − �2

1 + �2
− 1

2

)
E1 − E0

h̄ω⊥
, µ2 =

(
1 − �2

1 + �2
+

1

2

)
E1 − E0

h̄ω⊥
. (30)

In the 1D case, the positive solitons (UV > 0) bifurcate from zero at the lower energy
level µ = µ1, while the non-positive ones (UV < 0) bifurcate from the higher level µ = µ2.
This property also holds in the 2D case. This can be shown as follows. First of all, only one
branch of soliton solutions may correspond to each branch of the dispersion law. Second,
there is a point ρ0 on the positive real line such that ∇2U(ρ0) = 0. Indeed, setting ξ = ln ρ we
have ∇2U(ρ) = e−2ξ d2U

dξ 2 , whereas, for the solution with a finite l2-norm, the first derivative
dU
dξ

= ρ dU
dρ

tends to zero as ξ → ±∞ (i.e. when ρ → 0 or ρ → ∞). Considering

equation (28a) at ρ = ρ0, we obtain (µU + U 3 + κV )|ρ0 = 0, thus µ < 0 for UV > 0 (recall
that κ > 0), i.e. the positive solitons belong to the λ1-branch of the dispersion law, while the
non-positive ones belong to the λ2-branch.

Consider now the positive solitons with vanishing amplitude, i.e. in the limit µ →
µbif ≡ µ1. Set µ = µ1 − ε, with ε → 0 and suppose that in this limit U = O(εp) and
V = O(εq) with some p, q > 0. From system (28) we necessarily get p = q. Further steps
are essentially the same as in the 1D case [19]. First, we expand V in the power series with
respect to U and its derivatives, using for this goal equation (28b):

V = κβU − aκ3β4U 3 + 3a2κ5β7U 5 + κβ2∇2U + O(εs), (31)

where β = (ε − µ)−1 and s = min{3p + 1, p + 2, 7p}. Here, β should also be expanded with
respect to ε. Second, the result is substituted into equation (28a) and we get

−ε

(
1 +

κ2

µ2
2

)
U +

(
1 +

κ2

µ2
2

)
∇2U +

(
1 − aκ4

µ4
2

)
U 3 +

3a2κ6

µ7
2

U 5 = O(εs). (32)

From the coefficient at the cubic term and the definition of µ2, one immediately concludes
that the soliton bifurcation from zero is possible if and only if ε � εcr, where εcr is the same
as in the 1D case [19]:

εcr = κ(a1/4 − a−1/4). (33)

For ε > εcr, one can drop the quintic term from equation (32), thus the effective bifurcation
equation is the canonical 2D NLS equation except for the coefficients. In this case, the
condition that all terms have the same order requires that p = 1/2 and ∇2 ∼ ε, i.e. there is a
new length scale ξ = √

ερ. The soliton solution reads

U = √
εA0{R(

√
ερ) + εG(

√
ερ) + O(ε2)}, A0 ≡

(
1 +

κ2

µ2
2

)1/2 (
1 − aκ4

µ4
2

)−1/2

.

(34)

Here, R(ξ) is the Townes soliton.
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While the soliton amplitude approaches zero, the corresponding number of atoms has a
finite limit. Indeed, we have

Nu =
∫

d2 �ρ U 2 = A2
0Nth + O(ε), (35)

with Nth being the threshold for collapse (19) in a single 2D NLS equation. Thus, the
bifurcation from zero is discontinuous in the 2D case. This is quite dissimilar to the 1D case,
where only on the boundary ε = εcr is the soliton bifurcation from zero discontinuous [19].

On the boundary ε = εcr, the effective equation is the quintic NLS equation and p = 1/4,
exactly as in the 1D case. However, in contrast to the 1D case, the bifurcation from zero is
singular. Now U = ε1/4B0(F0(

√
ερ) + εF1(

√
ερ) +O(ε2)), with some B0 and F0(ξ). Hence,

the number of atoms Nu ∝ ε−1/2 as ε → 0. The bifurcating solitons are unstable in this case
by the VK criterion.

For ε > εcr, to decide on the stability of the soliton solutions near the bifurcation point
one has to find the derivative of the number of atoms with respect to ε in the limit ε → 0.
To this end, the soliton solution up to the order ε3/2 is required. The necessary higher order
expansion for V in terms of U reads

V = κβU − aκ3β4U 3 + 3a2κ5β7U 5 + κβ2∇2U + κβ3∇4U − 2aκ3β5∇2U 3 + O(ε7/2). (36)

Substituting this expression into equation (28a), one can get an equation for the correction
G = G(ξ) to the soliton solution (34). The result is

L1G ≡ (
1 − ∇2

�ξ − 3R2
)
G = L2R, (37)

with the operator L2 defined as follows:

L2 ≡
(

1 +
κ2

µ2
2

)−1
κ2

µ3
2

{
1 − 2

(
1 +

aκ2

µ2
2

A2
0

)
∇2

�ξ +

(
1 + 2

aκ2

µ2
2

A2
0

)
∇4

�ξ

}
. (38)

Now, we can find the total number of atoms N = Nu + Nv . We have

Nu = A2
0Nth + 2εA2

0

∫
d2 �ξRG + O(ε2). (39)

The v-component of the soliton up to the order ε3/2 follows from equations (34) and (36):

V = √
εA0

κ

µ2

{
R + ε

(
1

µ2

(∇2
�ξ − 1

)
R − A2

0
aκ2

µ3
2

R3 + G
)

+ O(ε2)

}
. (40)

Thus, the number of atoms Nv is given as

Nv = A2
0
κ2

µ2
2

Nth + 2ε
κ2

µ2
2

A2
0I + O(ε2), (41)

where we have denoted

I ≡
∫

d2 �ξR

(
1

µ2

(∇2
�ξ − 1

)
R − A2

0
aκ2

µ3
2

R3 + G
)

=
∫

d2 �ξ
{
RG − 2

µ2

(
1 +

aκ2

µ2
2

A2
0

)
R2

}
.

Relation (21) for the Townes soliton has been used to simplify the above expression for I.
The scalar product of R and G, which enters the expression for the number of atoms, is,

in fact, equal to zero. Indeed, using equation (37), we get∫
d2 �ξ RG =

∫
d2 �ξ RL−1

1 L2R,
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but

L−1
1 R = −1

2
(R + �ξ∇�ξR). (42)

(This equation can be obtained by taking the derivative of the stationary 2D NLS equation
with respect to the chemical potential µ at µ = −1.) Therefore,∫

d2 �ξ RG = −1

2

∫
d2 �ξ

(
RL2R +

1

2
�ξ∇�ξ (RL2R)

)
= 0,

via integration by parts in the second term. Hence, the total number of atoms assumes the
following form:

N = Nu + Nv =
(

1 +
κ2

µ2
2

)
A2

0Nth − 4εA2
0
κ2

µ3
2

(
1 +

aκ2

µ2
2

A2
0

)
Nth + O(ε2). (43)

Clearly, (for a � 0) in the vicinity of the bifurcation point µ = µ1, we have ∂N
∂µ

= − ∂N
∂ε

> 0
which renders the two-dimensional bifurcating solitons unstable in contrast to the stability of
the similar bifurcating solitons in one spatial dimension [19].

4.2. Bifurcation from zero in the presence of a transverse potential

We have seen that the soliton bifurcation from zero is always discontinuous due to the fact that
the solution has a new length scale ξ = √

ερ. If the transverse parabolic potential is taken
into account (i.e. when it is not flat), the bifurcating solution has the length scale of order 1
(i.e. the order of the oscillator length). The stationary coupled-mode system with the parabolic
transverse potential can be cast in a form analogous to that of system (28):

ωU + DU + U 3 + κV = 0, (44a)

(ω − ε)V + DV − aV 3 + κU = 0, (44b)

where we have introduced the operator D = ∇2 + 2 − ρ2 and a shifted chemical potential
ω = µ − 2. Note that D � 0 with D e−ρ2/2 = 0. System (44) in the limit of a vanishing-
amplitude solution, U = A e−ρ2/2 and V = B e−ρ2/2, with A,B → 0, gives two boundary
values of ω which coincide with the limiting chemical potentials of section 4.1: ω1,2 = µ1,2.
Moreover, the amplitudes are related as follows: B1,2 = −(ω1,2/κ)A1,2. Therefore, the
positive solution AB > 0 bifurcates at ω = ω1, exactly as in the soliton case.

To study the bifurcation in detail let us set ω = ω1−ε with ε → 0 (here ε can be negative).
Further steps in the derivation of the leading order equation for the bifurcating solution are
formally the same as those in section 4.1, one has only to substitute µ → ω and ∇2 → D.
For instance, we have U ∼ V ∼ |ε|p, where p > 0. For V we obtain the expression formally
equivalent to that of equation (31),

V = κβU − aκ3β4U 3 + κβ2DU + 3a2κ5β7U 5 + O(|ε|s), (45)

with β = (ε − ω)−1 and s = min{3p + 1, p + 2, 7p}, while U satisfies the equation

−ε

(
1 +

κ2

µ2
2

)
U +

(
1 +

κ2

µ2
2

)
DU +

(
1 − aκ4

µ4
2

)
U 3 +

3a2κ6

µ7
2

U 5 = O(|ε|s). (46)

In the derivation of equations (45) and (46), it is assumed that D ∼ ε, an analogue of
∇2 ∼ ε of the previous subsection, though the reason is different: the operator D is small
because of its discrete spectrum and the fact that the solution bifurcates from the ground
state (with zero eigenvalue). The critical zero-point energy difference εcr (33) delineates the
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regions of the defocusing and focusing cases; though for ε < εcr the effective equation (46) is
defocusing, it has a localized solution thanks to the external potential (in the operator D).

To make our approach general we will use only two properties of the operator D, namely
that it is non-positive (with zero being an eigenvalue) and that it has a discrete spectrum.
The case of ε = εcr is a special case of the bifurcation from zero, exactly as for the soliton
bifurcation of the previous subsection. Consider first ε �= εcr, i.e. when the cubic term in
equation (46) has a non-zero coefficient (positive or negative). Hence, p = 1/2 in this
case. Defining a new dependent variable F by setting U = √|ε||A0|F(ρ), with A0 given by
equation (34), we obtain for F the equation

−F + ε−1DF + σF 3 = O(|ε|3/2), σ = sgn {ε(ε − εcr)} , (47)

which has a non-zero solution in the leading order ε0 only if σ > 0, i.e. when the sign of ε

is equal to that of ε − εcr. Equation (47) allows one to obtain two leading orders of F in the
expansion with respect to ε: F = F0 + εF1 + O(ε2). The simplest way to get them is to invert
the operator 1 − ε−1D:

(1 − ε−1D)−1 = |φ0〉〈φ0| + ε

∞∑
n=1

|φn〉〈φn|
λn + ε

, (48)

where we have used the eigenvalues, −λn (λn > 0 for n � 1), and the eigenfunctions, |φn〉,
of the operator D: D|φn〉 = −λn|φn〉. Now, multiplying equation (47) by the operator from
equation (48) and collecting the successive orders of ε, we obtain

F = 〈
φ4

0

〉−1/2

{
1 − 3ε

2
〈
φ4

0

〉2 ∞∑
n=1

〈
φ3

0φn

〉2
λn

}
φ0(ρ) + ε

〈
φ4

0

〉−3/2
∞∑

n=1

〈
φ3

0φn

〉2
λn

φn(ρ) + O(ε2). (49)

Here, 〈·〉 denotes the integral
∫

d2 �ρ(·).
Let us find the number of atoms corresponding to the bifurcating solution. We need just

the leading order, since the bifurcation is continuous and the number of atoms tends to zero as
ω → ω1. We get

N =
∫

d2 �ρ(U 2 + V 2) = |ε|〈φ4
0

〉−1
(

1 +
κ2

µ2
2

)
A2

0 + O(ε2), (50)

where we have used that in the leading order V = κ
µ2

U + O(|ε|3/2). Now, for ε > 0, we

have ∂N
∂µ

= − ∂N
∂ε

< 0, i.e. the solution is stable for ε > εcr by the VK criterion (since there
is only one negative eigenvalue of the operator �1 (24)). In the case ε < εcr, the solution is
unconditionally stable (the operator �1 is positive). Unconditional stability in the latter case
can be explained by the fact that the effective equation (46) is the defocusing NLS equation
with the external potential, hence the ground-state solution is unconditionally stable.

Consider now the special case of the bifurcation from zero, when ε = εcr. The leading
order nonlinearity is quintic in U and we get p = 1/4. Defining a new variable F by setting

U = |ε|1/4B0F(ρ), where B4
0 = (

1 + κ2

µ2
2

) µ7
2

3a2κ6 , we get the effective equation

−F + ε−1DF + sgn(ε)F 5 = O(|ε|3/4), (51)

which allows one to obtain the leading order F = F0 +O(ε). It is clear that in this case ε > 0.
We get F0 = 〈

φ6
0

〉−1/4
φ0(ρ). Finally, using V = κ

µ2
U + O(ε3/4), we obtain

N = Nu + Nv = √
ε
〈
φ6

0

〉−1/2
(

1 +
κ2

µ2
2

)
B2

0 + O(ε). (52)

Therefore, in this case, the solution is also stable by the VK criterion (there is only one negative
eigenvalue of the operator �1 (24), similar to the previous case).
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We see that the confining transverse potential allows for stable small-amplitude solutions.
Moreover, for the zero-point energy difference below the critical value, ε < εcr, the effective
equation for the bifurcating solution is the defocusing NLS equation, whereas in the opposite
case it is the focusing cubic or quintic NLS equation.

4.3. Asymptotic solution of the coupled-mode system for µ → −∞
In the previous two subsections we have considered the bifurcation from zero. To complete the
consideration, one has to study also the other limit of the chemical potential, i.e. µ → −∞.
This can be done in a unified way for the coupled-mode system with or without the transverse
potential. The reason is that in both cases there is the same new length scale and the solution
is approximated by the Townes soliton. Therefore, we will use the stationary system (44) to
study the asymptotic solution. Thus, we set ω = −ε−1 with ε → 0, where ω = µ − 2 as in
the previous subsection. Finally, we will restrict the consideration to the case a � 0, which is
the most interesting one, and assume that the transverse potential is parabolic (which is not an
essential requirement, but is convenient for calculations).

Analysis of system (44) reveals that in the limit ω → −∞, the leading order of the
solution is as follows: U = O(ε−1/2) and V = O(ε1/2). Indeed, the leading order of V

cannot be greater than that of U, otherwise there is no localized solution (for a � 0) in the
limit ε → 0. Equation (44a) for U has a non-trivial solution only if D = O(ε−1). The only
way to satisfy the latter is to require that ∇2 ∼ ε−1, i.e. there is a new length scale ξ = ε−1/2ρ

(the effective length of the solution tends to zero as ω → −∞ and the external potential is
negligible). We will need to compute U up to the order ε3/2 and V up to the order ε1/2. Setting

U = ε−1/2(U(0)(ε−1/2ρ) + εU(1)(ε−1/2ρ) + ε2U(2)(ε−1/2ρ) + O(ε3)),

V = ε1/2(V (0)(ε−1/2ρ) + O(ε))

and expanding system (44) in the series with respect to ε, we obtain U(0) = R(ξ) and

L1U
(1)(ξ) = 2R(ξ), (53a)

L1U
(2)(ξ) = 2U(1)(ξ) − ξ 2R(ξ) + 3R(ξ)U(1)(ξ) + κV (0)(ξ), (53b)(

1 − ∇2
�ξ
)
V (0)(ξ) = κR(ξ), (53c)

where the operator L1 is given in equation (37). Since in the leading order we have the Townes
soliton, ε is positive, i.e. the solutions with ω → ∞ are impossible (though for ε < εcr,
according to the results of section 4.2, the curve N = N(ω) corresponding to the solution
of the coupled-mode system with the transverse potential initially enters the right half-plane
ω > ω1, it eventually turns left and approaches −∞; see figure 5).

By setting κ = 0 in equation (53b), one must obtain the derivative ∂N
∂µ

corresponding
to a single NLS equation (with or without the transverse potential) in the limit µ → −∞.
In the case without the transverse potential, we know that this derivative is zero due to the
critical scale invariance. In the case of a single 2D NLS equation with an external potential,
the derivative is negative and the number of atoms approaches the collapse threshold Nth (19)
from below. ‘Switching on’ the quantum tunnelling changes this behaviour: for κ > κcr, with
some κcr, the derivative ∂N

∂µ
assumes a positive value and the number of atoms approaches the

collapse threshold Nth from above. Let us find the critical tunnelling coefficient. We have

Nu =
∫

d2 �ρU 2 = Nth + ε2
∫

d2 �ξ{U(1)2 + 2RU(2)} + O(ε3)

= Nth − ε2
∫

d2 �ξ{ �ξ 2R2} + ε2κ2
∫

d2 �ξU(1)
(
1 − ∇2

�ξ
)−1

R + O(ε3),
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Nv =
∫

d2 �ρV 2 = ε2κ2
∫

d2 �ξR
(
1 − ∇2

�ξ
)−2

R + O(ε3).

In the derivation of these formulae, we have solved equation (53b) for U(2) and (53c) for V (0)

by the inversion of the corresponding operators and integration by parts. We have also used
that the scalar product

∫
d2 �ξRU(1) is equal to zero, which is an immediate consequence of

the fact that equation (53a) for U(1) does not involve the external potential (equation (42) also
can be used to establish this fact directly). Using equation (53a) and integrating by parts to
get rid of the term with U(1) in the last integral in the expression for Nu, we get the following
formula for the total number of atoms:

N = Nu + Nv = Nth − ε2
∫

d2 �ξ ξ 2R2 + ε2κ2
∫

d2 �ξ R
(
1 − ∇2

�ξ
)−1

R + O(ε3). (54)

For the coupled-mode system without the transverse potential, the first integral on the rhs
of equation (54) is absent. The second integral is positive:

I1 ≡
∫

d2 �ξR
(
1 − ∇2

�ξ
)−1

R ≈ 7.41. (55)

Hence, in this case, the number of atoms always approaches the threshold for collapse Nth of
a single 2D NLS equation from above.

Consider now the case of the parabolic transverse potential. In this case, the second term
on the rhs of equation (54) is negative and

I2 ≡
∫

d2 �ξ ξ 2R2 ≈ 13.82.

Therefore, the two terms of order ε2 on the rhs of equation (54) compensate each other at
some κ = κcr and the derivative ∂N

∂µ
changes sign in the limit µ → −∞. The derivative itself

is, however, of the order −1/ω3 = ε3 and the change of sign is not visible numerically.
The important conclusion from the asymptotic solution of the coupled-mode system for

µ → −∞ is that a new scale appears and the u-component of the solution is approximated
by the Townes soliton, while the amplitude of the v-component tends to zero. Hence, there
are always solutions which suffer from the collapse instability. They have the total number of
atoms approaching Nth as µ → −∞. The collapse instability also appears in this limit in the
one-dimensional coupled-mode system [19], where for a large number of atoms the solution
with µ → −∞ is, in fact, the collapsing ground state. However, in the two-dimensional
system with the transverse potential another stationary solution becomes the ground state
(see the next section).

5. Numerical solution of the coupled-mode system

From the analytical study of the bifurcation from zero and the asymptotic solution for
µ → −∞, we can conclude the following. First of all, in the case of the coupled-mode
system without the transverse potential, soliton solutions exist for µ � µbif with µbif ≡ µ1

from equation (29). The expansions of the total number of atoms for the bifurcating and
asymptotic solitons are as follows:

N =
(

1 +
κ2

µ2
2

)
A2

0Nth + 4(µ − µbif)A
2
0
κ2

µ3
2

(
1 +

aκ2

µ2
2

A2
0

)
Nth + O(µ − µbif)

2, µ → µbif,

(56)

N = Nth +
κ2

µ2
I1 + O(µ−3), µ → −∞, (57)
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Figure 1. The total number of atoms (solid line) versus the chemical potential corresponding to
the 2D soliton solutions of the coupled-mode system. The dashed and dotted lines give the number
of atoms in the u- and v-condensates, respectively. The number of atoms here is reduced by the
factor �, as in equation (17). The chemical potential is given in units of h̄ω⊥/2.

where A0 is defined in equation (34), R(ξ) is the Townes soliton and I1 is given by formula (55)
(note that ε > εcr must be satisfied for the Townes soliton to exist). Hence, we have
N(µbif) > Nth for all values of the system parameters (we consider a � 0). Moreover, in
both limits, the derivative ∂N

∂µ
is positive. This gives a clear indication that the total number of

atoms is a monotonic increasing function of the chemical potential and the soliton solutions
to the system of linearly coupled focusing and defocusing 2D NLS equations are unstable in
the whole domain of their existence. This conclusion was verified numerically. In figure 1 we
show the number of atoms versus the chemical potential for the 2D solitons (in all figures we
use the ‘scaled number of atoms’ N, related to the actual number of atoms by formula (17),
and the dimensionless chemical potential which pertains to the coupled-mode system (15)).

For the coupled-mode system with the transverse potential, the behaviour of the number
of atoms as a function of the chemical potential is much more interesting. In this case, the total
number of atoms satisfies equations (50), (52) and (54). Generalizing these to an arbitrary
confining potential, we have

N =


|µ − µbif|

〈
φ4

0

〉−1
(

1 + κ2

µ2
2

)2 ∣∣∣1 − aκ4

µ4
2

∣∣∣−1
+ O(µ − µbif)

2, ε �= εcr,

(µbif − µ)1/2
〈
φ6

0

〉−1/2
[

µ7
2

3a2κ6

(
1 + κ2

µ2
2

)3
]1/2

+ O(µ − µbif), ε = εcr,

(58)

N = Nth + µ−2(κ2I1 + Iext) + O(µ−3). (59)

Here, 〈· · ·〉 = ∫
d2 �ρ and φ0(ρ) is the ground-state wavefunction of the linear operator

−∇2 + Vext(ρ), where Vext(ρ) (an even function) is the confining potential; I1 is given by
equation (55), while Iext is determined by the quadratic term in the Taylor expansion of the
trap Vext(ρ) about ρ = 0 (for the parabolic trap Vext = ρ2, we have Iext ≈ −13.82). For the
parabolic trap,

〈
φ4

0

〉−1 = 2π and
〈
φ6

0

〉−1 = 3π2.
As shown in the previous section, for µ → −∞, the u-component of the solution tends

to the Townes soliton, while the amplitude of the v-component tends to zero. Hence, the
solution suffers from the collapse instability in this asymptotic limit. From equation (59), it
is seen that the total number of atoms approaches Nth. However, one cannot conclude that the
collapsing solution is the (unstable) ground state neither that there are no stable solutions to
the coupled-mode system which have total number of atoms greater than Nth. In fact, such
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Figure 2. Ground state of the coupled-mode system (stable with respect to collapse). Here, the
parameters are a = 0.005, κ = 2, ε = −3, µ = −2.31 and N = 21.5. The order parameters
U and V are given in units of

√
�/�⊥ and the radial length ρ in units of �⊥.

solutions do exist and give the ground state of the system, stable with respect to collapse.
Figure 2 illustrates an example of the stable ground-state solution with the total number of
atoms larger than Nth, there a = 0.005, κ = 2, ε = −3 and N = 21.5 (it corresponds to
a point with µ = −2.31 on the curve of figure 4). Indeed, equation (58) clearly states that
the bifurcating solution is always stable (by the VK criterion for ε � εcr and unconditionally
otherwise, according to the discussion in sections 3 and 4.2).

Let us show that the external parabolic potential can stabilize the Townes soliton (by
transforming it into a localized solution with the radius fixed by the oscillator length �⊥).
To this end, we will use formulae (56) and (58), i.e. we consider the limit µ → µbif

(we also assume that ε > εcr). The expansions for the number of atoms of the Townes-
type soliton and the ground state in the parabolic trap can be written as follows: NTS =
C0 + C1(µ − µbif) + O(µ − µbif)

2 and NGS = D1|µ − µbif| + O(µ − µbif)
2. Note that all

coefficients are positive. The condensate with N = NTS, i.e. which corresponds to unstable
Tonwes-type soliton close to the bifurcation point, is stabilized by the parabolic potential if
NGS � NTS. We obtain D1 + C1 � C0 (since µ < µbif and we consider the limit µ → µbif).
This inequality can be resolved easily for κ � |ε|. In this case, µ2 ∼ κ . Using equations (56)
and (58), the definition of A0 and the value of Nth, we obtain the condition for the condensate
stabilization κ � (1 + 2a/(1 − a))−1. On the other hand, the applicability condition (18)
requires that γ � max(Nu, aNv). For sufficiently small a � 1, the maximum is given by
Nu ∼ Nth = 11.69. Thus, γ � 10. The number of atoms in the stabilized condensate with
the chemical potential µ → µbif can be estimated as N ∼ 4Nth� = 47�, where usually
� ∼ 102–103. The actual value of the number of atoms in a stable stationary state could be
much larger than the estimate above, as is evident from figure 6. (Note also that the above
restriction on the values of κ can in fact be violated as is manifested in figures 3 and 4.)

To determine the ground state of the system, we have calculated the energy of the solution
numerically. In the coupled-mode approximation, the energy of the condensate in the double-
well trap is given as

E = h̄ω⊥
(∫

dz|ψu|4
)−1

16π
∣∣a(u)

s

∣∣ H,

(60)

H =
∫

d2 �ρ
{
|∇u|2 + |∇v|2 + ρ2(|u|2 + |v|2) + ε|v|2 − κ(uv∗ + vu∗) − |u|4

2
+ a

|v|4
2

}
.

Here, H is the Hamiltonian of the dimensionless coupled-mode system.
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Figure 3. The total number of atoms versus the chemical potential (the solid line) for a = 0. The
dashed and dotted lines give the number of atoms in the u- and v-condensates, respectively. The
axes units are as in figure 1.
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Figure 4. The total number of atoms versus the chemical potential (the solid line) for a = 0.005.
Here, ε > εcr. The dashed and dotted lines give the number of atoms in the u- and v-condensates,
respectively. The axes units are as in figure 1.

The existence of stable stationary solutions with large total number of atoms depends on
the system parameters, principally on the tunnelling coefficient κ and the zero-point energy
difference ε. In the asymptotic limit of weakly coupled equations, i.e. when µ → −∞,
the ground state is unstable with respect to collapse, similar to a single NLS equation with
external potential. For large values of κ and large negative ε, one can expect the appearance
of a new ground state due to strong quantum tunnelling through the barrier and competition
of the attraction in the u-condensate and the lower zero-point energy for the atoms in the
v-condensate. Stable solutions with a large total number of atoms were indeed found, for
instance, for a = 0, κ = 10 and ε = −10; the corresponding dependence of the total number
of atoms on the chemical potential is given in figure 3. We have checked numerically (by a
numerical analysis of the spectrum of �1 (24) from section 3) that the VK criterion applies.
Therefore, the stable solutions pertain to the region where ∂N

∂µ
< 0, close to the point of the

bifurcation from zero.
Figure 3 corresponds to the special case of a = 0, i.e. when the v-condensate is a non-

interacting quantum gas. However, for a > 0, when the v-condensate is repulsive, the curve
N = N(µ) exhibits similar behaviour, see figure 4.
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Figure 5. The energy of solutions versus the total number of atoms, corresponding to figure 4.
The almost straight line contains the ground state of the system and corresponds to the part of the
curve N = N(µ) in figure 4 where ∂N

∂µ
< 0. Here, the number of atoms is reduced by the factor

� from equation (17), whereas the energy is given in units of h̄ω⊥�/2.
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Figure 6. The total number of atoms versus the chemical potential (the solid line). The dashed
and dotted lines give the number of atoms in the u- and v-condensates, respectively. Here, ε < εcr.
The inset shows a section of the figure about the bifurcation point. The axes units are as in
figure 1.

The part of the curve N = N(µ) with ∂N
∂µ

< 0, corresponding to the stable solutions
with a large number of atoms, also minimizes the energy when there is a local maximum
with the total number of atoms higher than Nth. This is illustrated in figure 5, where we give
the equation of state, H = H(N) (i.e. the energy versus the total number of atoms in the
dimensionless variables). The equation of state given in this figure is characteristic for the 2D
coupled-mode system for a large region of values of the system parameters, when there is a
maximum of the total number of atoms higher than Nth. Otherwise, the energy takes positive
values and the minimum (zero) corresponds to the collapsing ground state.

Figures 3 and 4 correspond to the case ε > εcr. A new feature appears in the opposite
case, i.e. when ε < εcr. Indeed, in this case, the effective equation (see equation (46))
is defocusing close to the bifurcation point. This fact changes drastically the dependence
of the total number of atoms on chemical potential: the curve N = N(µ) enters into
the region of µ > µbif , i.e. to the right of the bifurcation point, see the inset in figure 6.
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Figure 7. The total number of atoms versus the chemical potential (the solid line) for small values
of the tunnelling coefficient and energy difference. Here, ε < εcr. The dashed and dotted lines
give the number of atoms in the u- and v-condensates, respectively. The axes units are as in
figure 1.

The protruding part of the curve is analogous to that in a single defocusing 2D NLS equation
with an external potential. The operator �1 appearing in the linear stability analysis of section 3
is positive definite there. Hence, the solutions corresponding to this part of the curve
N = N(µ) are unconditionally stable.

Moreover, there is a turning point bifurcation, where ∂N
∂µ

= ∞ (see the inset in figure 6).
This bifurcation corresponds to the change of sign of the effective nonlinearity in the coupled-
mode system from negative to positive as one moves upwards along the curve starting from
the bifurcation point. Accordingly, the lowest positive eigenvalue of the operator �1,0 passes
through zero and becomes negative to the left of the turning point. As there are no other
negative eigenvalues, the VK criterion applies to the left of the turning point bifurcation.

The equation of state H = H(N) corresponding to figure 6 is similar to that illustrated in
figure 5. Accordingly, the total number of atoms in the ground state exceeds Nth by an order
of magnitude in this case.

Finally, figure 7 illustrates the fact that the maximum of the total number of atoms
achievable by the stationary solution is determined by the tunnelling coefficient κ and the
zero-point energy difference ε (compare to figure 3). In this case, ε < εcr (the turning point
bifurcation as well as the protruding part of the curve are also present, but not visible). The
stability is again determined by the VK criterion, except for the extremely narrow region
before the turning point bifurcation (where the solution is unconditionally stable). In this case,
the total number of atoms is always smaller than the threshold Nth.

As µ → −∞, the curves N = N(µ) and Nu,v = Nu,v(µ) in figures 3, 4, 6 and 7 are
similar to that of the ‘solitonic’ curve shown in figure 1. We have confirmed that the asymptotic
solution for µ → −∞ indeed approaches the Townes soliton in its u-component, whereas the
v-component tends to zero. Thus, in the limit µ → −∞, the two condensates are weakly
coupled, similar to the one-dimensional case [19].

The stable ground state in the 2D coupled-mode system, which corresponds to the part of
the curve N = N(µ) immediately after the bifurcation point, appears due to breaking of the
scale invariance by the transverse trap. This is reflected in the estimate of the solution width
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which is of the order of the oscillator length of the trap (see section 4.2). It is seen that the
larger share of atoms is gathered in the repulsive v-condensate. Hence, such a state is similar
to the unusual bright soliton of the one-dimensional coupled-mode system [19]. However,
there is an important difference between the one- and two-dimensional cases: in one spatial
dimension the ground state always corresponds to the weakly coupled condensates and suffers
from the collapse instability for a large number of atoms.

6. Conclusion

Nonlinearity of the Gross–Pitaevskii equation is due to the atomic interaction which is essential
for understanding the properties of the condensate. Control over the nonlinearity in the Gross–
Pitaevskii equation allows for coupling of two condensates with the nonlinearities of opposite
signs (the scattering lengths). This can be realized using a double-well trap with far-separated
wells. In the one-dimensional case, there are stable bright solitons with almost all atoms
gathered in the repulsive condensate [19]. In the two-dimensional case, on the other hand,
the Townes-type solitons in the system are always unstable due to the fact that the vanishing-
amplitude 2D soliton solution has a finite l2-norm, i.e. the bifurcation from zero always
corresponds to a discontinuity in the dependence of the number of atoms on the chemical
potential. This is quite dissimilar to the one-dimensional coupled-mode system, where the
bifurcation from zero is continuous except for the boundary case [19].

With the use of a parabolic potential, the spatial scale of the solution is fixed by the
oscillator length. This allows for the stable stationary solutions (though they are not solitons)
with large l2-norms, which represent the ground state of the system. The ground state is
secured from the collapse instability by an energy barrier. Interestingly, this ground-state
solution may have the l2-norm, i.e. the number of atoms of the condensate in a double-well
trap, much higher than the collapse threshold in a single 2D NLS equation (in some cases, the
total number of atoms exceeds the collapse threshold by an order of magnitude). This is a new
phenomenon, which pertains only to the two-dimensional coupled-mode system, since in the
one-dimensional case, for a large number of atoms, the ground state corresponds to weakly
coupled condensates, has a large negative chemical potential and suffers from the collapse
instability [19]. A more detailed study of the properties of the energy barrier for collapse is
relegated to [21].

Recently, a system of equations similar to the coupled-mode system was elucidated in the
context of two parallel coupled BECs [39]. Depending on the coupling, the system exhibits
transition from a dark soliton to the Josephson vortex and vice versa. This opens a new
direction for research related to the coupled-mode system.
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